
GEOMETRIC HASHING: AN

OVERVIEW

Haim J. Wolfson

Isidore Rigiutsos

What is geometric hashing good for?

 Identification of test objects from a set of know
objects using 2D or 3D features

 Object models can be made invariant to
translation, rotation, scaling, affine and projective
transformations! NEAT!

 Uses an arbitrary feature detector. Works with
SIFT etc.

 Quick model identification.

Procedure for Model Building

 Building Object Models

 Extract Features

 Define a basis with respect to two features

 Parameterize features with respect to basis.

 Add the parameterized features to a 2D hash table

 Repeat with a new basis until every basis is added

 Do some hash table tweaking to improve worst case
performance.

 Do further hash table tweaking to improve performance
in the case of noise.

Procedure for Model Detection.

 Model Detection

 Extract features from the image and parameterize them

with respect to a basis.

 Do a hash table lookup for each feature. Hash table entries

vote for the model.

 For each candidate model complete the necessary

transformation, and test against the input.

 If the match isn’t good pick a new basis and restart the

procedure.

Feature Extraction

Scale and Create a Basis

Scale to unit length

(scale invariance)

Rotate to +x axis

(rotation invariance)

We also create a 2D hash table

v from –1 to 1

u from

–1 to 1

Kitty(4,1)
Homer(1,2)
Zim (2,7)

Mickey(3,1)

Model and basis

Now repeat for each basis

Each arrow is a basis

Recognition of Objects

•Find Features

•Select Basis

•Parameterize Features

•Do hash table lookup

•Histogram number of

matches per model

Recognition of Objects

Threshold

Potential Matches

(4,1)(3,2) (3,1) (1,4)

Recognition of Objects

Least Square Transform Recovery

(find the rotation, and translation of the basis)

Verification

Geometric hashing has a number of nice properties in 2D

Transformation Recovered: What is needed:

Translation One point centered at origin

Translation & Rotation Two points

Translation, Rotation,

Scaling

Two points and scale to length of one.

Affine Transformation Three Points

Projective Transformation Four Points

Geometric Hashing also works in 3D

Transformation

Recovered:

What is needed:

Translation One point centered at origin

Translation & Rotation Three points –or- Two non co-linear

vectors

Translation, Rotation,

Scaling

A line and a point or

Two non-collinear non-coplanar lines

Run time of Geometric Hashing

M = number of models

n = number of features per model.

c = the number of elements in a basis

H = hash table access time.

S = number of features in a test image

Computing the hash table runs at O(Mnc+1)

Looking up a model in the hash table takes O(HSc+1)

The run time is not great, but tolerable when H is small as H can vary

i.e. O(1) ≤ H ≤ O(Mnc+1)

What if we end up with a really bad

hash table?

We can calculate (f(u,v)) or model (f*(u,v)) the probability

distribution function of the entries of the hash table.

Really bad hash table. Worst case

performance is horrible!

pdf of has entry distribution f(u,v)

Rehashing a Table

Find a function h(u,v) that can apply to each hash entry to get

a nice uniform distribution. This is to say h(u,v) makes f(u,v) or

f*(u,v) into an uniform distribution.

Nice uniform hash table

Similarity transform with

Gaussian noise has this pdf

Intuition behind rehashing

Consider a 1D hash table.

We determine f(u) for this table

And find h(u) that does this:

Modeling and Dealing with Noise

Model “Hits”

Noise

Percent of total hits

More noise = less hits

Some noise tolerance is built into the hash table by quantization. Bigger

bin sizes result in less noise but lower fidelity. One approach is to weight

bins in a neighborhood or weighting the votes of each bin

More about image noise

1. The larger the separation of basis points the smaller the effect

of noise spread in the hash table. (Noise is proportionally

smaller)

2. The closer a point is to the center of the basis the smaller the

spread of noise in the hash table.

3. Short hash table entries contain more information than long

ones.

Bayesian Formulation for Weighted

Bin Distribution

We can construct a Bayesian formulation of geometric hashing

x y = value of basis transformation

u v = hash table bin value

pμ pv = trial basis

σ = error distribution

S = number of points in scene z is the neighborhood

function for weighting hash

table entries

